Red Hat kündigt mit der Einführung von Red Hat Enterprise Linux AI (RHEL AI) eine grundlegende Modellplattform an, mit der Anwender generative KI-Modelle (GenAI) nahtlos entwickeln, testen und einsetzen können. RHEL AI vereint die Open-Source-lizenzierte Large-Language-Model (LLM)-Familie Granite von IBM Research, InstructLab-Modell-Alignment-Tools, die auf der Methode Large-Scale Alignment for ChatBots (LAB) basieren.

Die gesamte Lösung ist als optimiertes, bootfähiges RHEL-Image für individuelle Server-Implementierungen in der Hybrid Cloud paketiert und auch als Teil von OpenShift AI, der hybriden Plattform für Maschinelles Lernen (MLOps) von Red Hat, für die Ausführung von Modellen und InstructLab in verteilten Cluster-Umgebungen enthalten.

Der Launch von ChatGPT hat ein enormes Interesse an GenAI geweckt, und das Innovationstempo hat sich seitdem weiter beschleunigt. Unternehmen sind von der Evaluierung von GenAI-Services zur Entwicklung KI-gestützter Anwendungen übergegangen.

Ein schnell wachsendes Ökosystem offener Modelloptionen hat die KI-Innovation weiter vorangetrieben und gezeigt, dass es nicht nur ein Modell für alle Anforderungen geben wird. Die Nutzer werden von einer Reihe von Wahlmöglichkeiten profitieren, um spezifischen Aufgaben gerecht zu werden, was durch einen offenen Innovationsansatz noch beschleunigt werden kann.

Die Umsetzung einer KI-Strategie erfordert mehr als nur die Auswahl eines Modells. Unternehmen benötigen das Fachwissen, um ein bestimmtes Modell auf ihren spezifischen Anwendungsfall abzustimmen und die erheblichen Kosten einer KI-Implementierung in den Griff zu bekommen. Der Mangel an Data-Science-Kenntnissen geht daher mit erheblichen finanziellen Anforderungen einher:

  • die Beschaffung von KI-Infrastruktur oder Inanspruchnahme von KI-Dienstleistungen

  • der komplexe Prozess des Tunings von KI-Modellen für spezifische Geschäftsanforderungen

  • die Integration von KI in Unternehmensanwendungen

  • die Verwaltung des Lebenszyklus von Anwendungen und Modellen.

Um die Eintrittsbarrieren für KI-Innovationen wirklich zu senken, müssen Unternehmen den Kreis derjenigen erweitern, die an KI-Initiativen mitarbeiten können, und gleichzeitig die Kosten unter Kontrolle bringen. Mit den InstructLab-Alignment-Tools, Granite-Modellen und RHEL AI will Red Hat die Vorteile echter Open-Source-Projekte – frei zugänglich und wiederverwendbar, transparent und offen für Beiträge – auf GenAI anwenden, um diese Hindernisse zu beseitigen.

KI-Entwicklung im offenen Raum mit InstructLab​
IBM Research hat mit der Technik Large-Scale Alignment for ChatBots (LAB) einen Ansatz für die Modellanpassung entwickelt, bei dem eine Taxonomie-geleitete synthetische Datengenerierung und ein neuartiges mehrstufiges Tuning-Framework zum Einsatz kommen. Dieser Ansatz macht die Entwicklung von KI-Modellen offener und für alle Nutzer zugänglicher, indem er die Abhängigkeit von kostenintensiven menschlichen Annotationen und proprietären Modellen verringert.

Mit der LAB-Methode können Modelle verbessert werden, indem die mit einer Taxonomie verbundenen Fähigkeiten und Kenntnisse spezifiziert, synthetische Daten aus diesen Informationen in großem Umfang für die Modelle erzeugt und die erzeugten Daten für das Modelltraining verwendet werden.

Nachdem IBM und Red Hat erkannt haben, dass die LAB-Methode zu einer erheblichen Verbesserung der Modell-Performance beitragen kann, haben sie InstructLab ins Leben gerufen, eine Open-Source-Community, die auf der LAB-Methode und den Open-Source-Granite-Modellen von IBM aufbaut.

Das InstructLab-Projekt zielt darauf ab, die LLM-Entwicklung in die Hände von Entwicklern zu geben, indem es den Aufbau und die Erstellung eines LLMs sowie den Beitrag dazu so einfach macht wie den Beitrag zu jedem anderen Open-Source-Projekt.

Im Rahmen der Einführung von InstructLab hat IBM auch eine Familie von ausgewählten Granite-English-Language- und Code-Modellen veröffentlicht. Diese Modelle werden unter einer Apache-Lizenz mit Transparenz über die zum Training dieser Modelle verwendeten Datensätze veröffentlicht.

Das englische Sprachmodell Granite 7B wurde in die InstructLab-Community integriert, in die Endbenutzer ihre Fähigkeiten und ihr Wissen einbringen können, um dieses Modell gemeinsam zu verbessern, so wie sie es auch bei jedem anderen Open-Source-Projekt machen würden. Eine ähnliche Unterstützung für Granite-Code-Modelle innerhalb von InstructLab wird in Kürze verfügbar sein.

Open-Source-KI-Innovation auf einem zuverlässigen Linux-Backbone​
RHEL AI baut auf diesem offenen Ansatz für KI-Innovationen auf und enthält eine unternehmenstaugliche Version des InstructLab-Projekts sowie Granite-Sprach- und Codemodelle zusammen mit der weltweit führenden Enterprise-Linux-Plattform, um den Einsatz in einer hybriden Infrastrukturumgebung zu vereinfachen. Dies schafft eine grundlegende Modellplattform, um Open-Source-lizenzierte GenAI-Modelle in Unternehmen zu bringen. RHEL AI umfasst:

  • Open-Source-lizenzierte Granite-Sprache und Code-Modelle, die von Red Hat unterstützt und sichergestellt werden

  • eine unterstützte, im Lebenszyklus befindliche Distribution von InstructLab, die eine skalierbare, kosteneffiziente Lösung für die Verbesserung der LLM-Fähigkeiten bietet und Wissen und Fähigkeiten für einen viel größeren Kreis an Benutzern zugänglich macht

  • optimierte bootfähige Modell-Runtime-Instanzen mit Granite-Modellen und InstructLab-Tooling-Paketen als bootfähige RHEL-Images über den RHEL Image Mode, einschließlich optimierter Pytorch-Laufzeitbibliotheken und von Beschleunigern für AMD Instinct MI300X, Intel und NVIDIA GPUs sowie NeMo Frameworks

  • den umfassenden Enterprise-Support- und das Lifecycle-Versprechen von Red Hat, das mit einer vertrauenswürdigen Produktdistribution für Unternehmen, einem 24x7-Produktionssupport und einem erweiterten Lifecycle Support verbunden ist.

Wenn Unternehmen mit neuen KI-Modellen auf RHEL AI experimentieren und sie optimieren, können sie diese Workflows mit Red Hat OpenShift AI skalieren, das RHEL AI enthalten wird. Zudem können sie die Kubernetes-Engine von OpenShift nutzen, um KI-Modelle in großem Umfang zu trainieren und bereitzustellen, und die integrierten MLOps-Funktionen von OpenShift AI zur Verwaltung des Modelllebenszyklus verwenden.

Das watsonx.ai Enterprise Studio von IBM, das heute auf Red Hat OpenShift AI aufbaut, wird von der Verfügbarkeit von RHEL AI in OpenShift AI profitieren und zusätzliche Funktionen für die Entwicklung von Unternehmens-KI, das Datenmanagement, die Modell-Governance und eine verbesserte Preis-Performance mit sich bringen.

Die Cloud ist hybrid. Das gilt auch für KI
Seit mehr als 30 Jahren sorgen Open-Source-Technologien für schnelle Innovationen, stark reduzierte IT-Kosten und niedrigere Innovationsbarrieren. Red Hat ist seit fast ebenso langer Zeit führend in diesem Bereich – von der Bereitstellung offener Enterprise-Linux-Plattformen mit RHEL in den frühen 2000er Jahren bis hin zur Entwicklung von Containern und Kubernetes als Fundament für die Open Hybrid Cloud und Cloud-natives Computing mit Red Hat OpenShift.

Dieser Trend setzt sich fort, indem Red Hat KI-/ML-Strategien in der offenen Hybrid Cloud vorantreibt, sodass KI-Workloads dort ausgeführt werden können, wo die Daten liegen, sei es im Rechenzentrum, in mehreren Public Clouds oder an der Edge.

Die Vision von Red Hat für KI umfasst nicht nur die Workloads, sondern auch das Modelltraining und -tuning, um Einschränkungen in Bezug auf Datensouveränität, Compliance und betriebliche Integrität zu überwinden. Die Konsistenz, die die Plattformen von Red Hat über diese Umgebungen hinweg bieten, unabhängig davon, wo sie ausgeführt werden, ist entscheidend, um KI-Innovationen voranzutreiben.

RHEL AI und die InstructLab-Community tragen zur Verwirklichung dieser Vision bei, indem sie viele Hürden für das Experimentieren mit und den Aufbau von KI-Modellen abbauen und gleichzeitig die Tools, Daten und Konzepte bereitstellen, die für die nächste Welle intelligenter Workloads benötigt werden.

Weitere Beiträge....

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.